The realization of porous molecular frameworks (e.g. MOFs/COFs) whose properties (e.g. conductivity, color, phase) are responsive to external stimuli is vital for their adoption into next-generation devices. We are synthesizing such responsive materials and characterizing their unique electronic and optical properties using specialized in situ spectroscopic tools. Notably, we are pioneering the development of gas-phase methods to synthesize large single crystals and thin films of various molecular frameworks and are performing detailed device measurements to gain insight into the unique electronic structure of these materials. These studies pave the way for advanced sensors, actuators, and energy storage solutions.

Porous Molecular Solids

2D materials (e.g. transition-metal dichalcogenides, graphene, and analogous atomic monolayers) are a versatile platform for novel optical, electronic, catalytic, and quantum device studies. We are developing new synthetic breakthroughs allowing for preparation of low-dimensional materials with tunable morphologies and phases, and, thereby, tunable properties. Notably, we have recently dedicated significant effort to the development of “designer surfaces” on which to grow new low-dimensional materials with anomalous properties. These studies enable a host of future research efforts in electronics, energy conversion, and quantum computing/sensing.

2D Materials

Multi-component nanostructures support unique and advanced optoelectronic, thermal, and catalytic properties, but are challenging to synthesize. We are developing solution-phase methods that utilize porous ionic solids as precursors for synthesis of complex nanomaterials. Notably, we prepare nanoscale dimers and multimers with atomically precise interfaces and use these constructs to control optical properties and chemical reaction pathways at the nanoscale. These studies advance our understanding of photo-induced chemical reactions and accelerate development of new catalysts.

Multi-Component Nanostructures